El ozono actúa como agente en dermatología a través de la destrucción de bacterias, hongos y virus, al tiempo que activa la inmunidad celular y humoral, ejerce una acción antioxidante y protege contra diversas condiciones patológicas.
Los efectos terapéuticos de la Ozonoterapia dependen de su concentración, por lo que resulta fundamental conocer este factor (IP).
Los aceites ozonizados consisten en la combinación de aceites insaturados y ozono que dan como resultado la formación de 1,2,4-trioxolanos, que representan la forma activa de ozono. Este anillo trioxolano conduce a la producción de compuestos responsables de los procesos de curación (especialmente) en presencia de exudados que ayudan a restaurar el equilibrio de la piel dañada, ulcerada o herida por diversas etiologías[i].
Una de las principales ventajas de la Ozonoterapia con aceites ozonizados es que resulta fácil de usar por el paciente, ya sea por su accesibilidad en precio y almacenamiento, o porque presenta resultados rápidos y visibles, reduciendo el picor y el edema casi inmediatamente tras su aplicación, potenciando el tratamiento, sin riesgo de efectos adversos generalmente asociados a cremas con contenido en cortisona.
Su efecto, además de antimicrobiano y equilibrante del microbioma cutáneo, permite una hidratación y protección de la barrera natural de la piel, siendo de especial utilidad en pacientes con dermatitis atópica.
El tratamiento con aceites ozonizados es una excelente manera de mejorar otros tratamientos de ozonoterapia, pudiéndose combinar perfectamente con estos o con cualquier otro tipo de tratamiento que desee realizar el paciente.
Tabla 1 – Aplicabilidad clínica de la ozonoterapia y los aceites de ozono
Preparación del Ozono |
Efectos |
Utilidad Clínica |
Referencia |
Agua Ozonizada
Aceites Ozonizados |
Antimicrobiano
Alivio del picor
Hidratante
Reducción del exudado |
Infecciones alérgicas
Eritema / descamación
Cicatrización de heridas y ulceraciones |
[ii] |
Autohemoterapia |
Defensas antioxidantes
Inmunorregulación
Modificación epigenética |
Condiciones crónicas y
sistémica (incluye autoinmune)
Neuralgia postherpética |
[iii] |
[i] Zeng, J., & Lu, J. (2018). Mechanisms of action involved in ozone-therapy in skin diseases. International Immunopharmacology, 56, 235–241. doi:10.1016/j.intimp.2018.01.040
[ii] G.A. Borges, S.T. Elias, S.S. Da, P.O. Magalhaes, S.B. Macedo, A.P. Ribeiro, et al., In vitro evaluation of wound healing and antimicrobial potential of ozone therapy, J. Craniomaxillofac. Surg. 45 (2017) 364–370.
I. Zanardi, E. Borrelli, G. Valacchi, V. Travagli, V. Bocci, Ozone: a multifaceted molecule with unexpected therapeutic activity, Curr. Med. Chem. 23 (2016) 304–314.
V. Travagli, I. Zanardi, G. Valacchi, V. Bocci, Ozone and ozonated oils in skin diseases: a review, Mediat. Inflamm. 2010 (2010) 610418.
I. Zanardi, S. Burgassi, E. Paccagnini, M. Gentile, V. Bocci, V. Travagli, What is the best strategy for enhancing the effects of topically applied ozonated oils in cutaneous infections? Biomed. Res. Int. 2013 (2013) 702949.
S.A. Pai, S.A. Gagangras, S.S. Kulkarni, A.S. Majumdar, Potential of ozonated sesame oil to augment wound healing in rats, Indian J. Pharm. Sci. 76 (2014) 87–92.
[iii] V. Bocci, I. Zanardia, G. Valacchi, E. Borrelli, V. Travagli, Validity of oxygen-ozone therapy as integrated medication form in chronic inflammatory diseases, Cardiovasc. Hematol. Disord.: Drug Targets 15 (2015) 127–138.
F. Molinari, V. Simonetti, M. Franzini, S. Pandolfi, F. Vaiano, L. Valdenassi, et al., Ozone autohemotherapy induces long-term cerebral metabolic changes in multiple sclerosis patients, Int. J. Immunopathol. Pharmacol. 27 (2014) 379–389.
H. Chen, B. Yu, C. Lu, Q. Lin, The effect of intra-articular injection of different concentrations of ozone on the level of TNF-alpha, TNF-R1, and TNF-R2 in rats with rheumatoid arthritis, Rheumatol. Int. 33 (2013) 1223–1227.
G. Lintas, F. Molinari, V. Simonetti, M. Franzini, W. Liboni, Time and time-frequency analysis of near-infrared signals for the assessment of ozone autohemotherapy long-term effects in multiple sclerosis, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013 (2013) 6171–6174.
V. Travagli, I. Zanardi, A. Silvietti, V. Bocci, A physicochemical investigation on the effects of ozone on blood, Int. J. Biol. Macromol. 41 (2007) 504–511.
Ver versión completa
Aceites Ozonizados y Dermatitis Atópica
(Versión Completa en Inglés)
Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease that involves pruritus ie. itching (usually intense) and damage to the skin barrier, with skin lesions ranging from mild erythema, to severe lichenification and erythroderma. It affects about 20% of children and 10% of adults worldwide and usually presents itself alongside other conditions such as sleep disorders, anxiety, social isolation and depression[i].
The microbiome of AD patients´ lesions are occupied by about 90% Staphylococcus aureus (S. aureus), which contributes to a greater frequency of attacks and poor prognosis/worsening of the disease[ii]. Colonization of S. aureus contributes to the activation of type 2 (Th2) helper lymphocytes, the dominant immune phenotype in this type of AD[iii].
Several studies have shown that a prevalence of S. aureus significantly increases the acute phase of AD and strongly correlates with the severity of the disease presentation, whilst another group of typical skin bacteria, which includes, Propionibacterium, Corynebacterium, and Malassezia [iv] are found in reduced numbers. The fact is that the data indicates that the diversity of the skin microbiome influences the severity and type of AD lesions[v].
Ozone therapy, which uses Ozone – a classic oxidant and antiseptic, has demonstrated clinical success in processes that require an antimicrobial effect, potentiation of antioxidant defenses, immunoregulation, epigenetic modification, biosynthesis, vasodilation and analgesic effect. Ozonated Oils have been used in the treatment of cutaneous inflammatory and infectious diseases, as they can quickly and effectively relieve various symptoms, such as itching and edema, thus mitigating the severity of the disease[vi].
In a comparative study carried out in 2019, a total of 12 AD patients between 6 and 28 years of age were pooled to verify the efficacy and safety of using ozonated oil on injured and uninjured atopic skin. This study found that about 7 out of 12 patients had a high ratio of S. aureaus in the cutaneous microbiome, the presence of Staphylococcus epidermis (S. epidermis) and Staphylococcus capitis (S. capitis) as well. Additionally, 8 of the patients displayed a history of asthmatic bronchitis and/or rhinitis.
Efficacy of ozone therapy in AD
Before the intervention, clinical manifestations of maculopapular lesion (rash), erosion and exudation were visible, especially in the areas of flexion of the limbs (inner area of the arms/elbow, knees, neck, armpits) where the skin is usually very dry.
After treatment, there was an attenuation (a reduction of effect) of inflammatory papules and edema. Observed in the samples with reflectance confocal microscopy (RCM). Thus, we understand that less infiltration of inflammatory cells occurred in the epidermis, compared to the samples before treatment.
Another way to verify the effectiveness of the treatment was by using modified[1] SCORAD and EASI scales that indicated a 22.15% decrease in symptoms after only three days of treatment. At the end of the treatment, symptoms decreased by about 48%, and we can therefore conclude that Ozone Therapy significantly mitigates AD lesions.
Diversity of the lesion microbiome vs severity
It was also verified that there is a direct relationship between the diversity of the microbiome and the severity of clinical manifestations, lesions and recurrence of AD, thus proving that the locations susceptible to greater damage/injury are those where there is less bacterial diversity.
Effect of Ozone Therapy on Skin Microecology
Ozone therapy has been applied in medicine as a strong oxidant that eliminates microorganisms and is used in over 50 pathological conditions, including skin diseases[vii].
Skin microbiome imbalance has a negative impact on inflammatory and immune responses in AD, contributing to its severity[viii].
The presence of S. aureus is associated with the exacerbation and recurrence of AD[ix] and S. aureus proliferation which can lead to the spread of P. acnes, (a common bacterium of the skin microbiome) through the production of virulence factors and causing endogenous epidermal proteolysis, alongside damage to the skin barrier[x].
Evidence shows that uninjured skin in AD patients has greater bacterial diversity and the application of ozonated oils can both restore balance and increase microbiome diversity.
Treatment with ozonated oils significantly decreases the proportion of Staphylococcus (which is excessively elevated) in the skin microbiome of patients with moderate to severe AD lesions[xi].
In addition to Ozone´s bactericidal properties, it also allows microbiological diversity restoration in AD lesions, with a decrease of around 75% in Staphylococcus strains, possible in just three days of treatment[xii].
As for other strains, such as the Acinetobacter, group, which are conditionally pathogenic, although their presence induces dendritic cell immune tolerance and inhibition of type 1 (Th1) T helper lymphocyte polarization, thus reducing the allergic reaction[xiii]. Other indications show that A. ropheus can stimulate the monocyte and keratinocyte production of interleukin 10 (IL-10) in order to modulate the Th1/Th2 cell differentiation ratio and, thereby, exert an anti-inflammatory effect[xiv].
Additionally, treatment with ozonated oils increases the proportion of Acinetobacter species, which has a direct effect on disease severity and Staphylococcus overgrowth.
Conclusion
Treatment of patients with atopic dermatitis that can include baths with ozonated products, the application of oils and creams (whether over the whole body as a prevention, or applied locally for acute) phase treatment) can rapidly improve symptoms, relieving itching and reducing inflammation, whilst simultaneously rebalancing the skin´s microbiome, allowing a reduction of severity-enhancing agents, such as Staphylococcus, increasing the diversity of the skin’s microecology, reducing the size and severity of active lesions and enhancing the healing of injured skin. This is why ozonated products are considered extremely useful in this disease and a new and sensible approach in clinical practice, allowing the use of more natural and hypoallergenic.
[1] Dermatitis assessment scales/tools using a clinical score developed and validated by a group of experts on atopic dermatitis
[i] D. Garmhausen, T. Hagemann, T. Bieber, I. Dimitriou, R. Fimmers, T. Diepgen, N. Novak, Characterization of different courses of atopic dermatitis in adolescent and adult patients, Allergy 68 (4) (2013) 498–506.
M. Boguniewicz, D.Y. Leung, Atopic dermatitis: a disease of altered skin barrier and immune dysregulation, Immunol. Rev. 242 (1) (2011) 233–246.
[ii] J.E. Totté, V.D.F. Wt, M. Hennekam, B.A. Van, E.J. van Zuuren, S.G. Pasmans, Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis, Br. J. Dermatol. 175 (4) (2016) 687–695.
L. Hepburn, D.J. Hijnen, B.R. Sellman, T. Mustelin, M.A. Sleeman, R.D. May, I. Strickland, The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies, Br. J. Dermatol. 177 (1) (2016).
[iii] H. Liu, N.K. Archer, C.A. Dillen, Y. Wang, A.G. Ashbaugh, R.V. Ortines, T. Kao, S.K. Lee, S.S. Cai, R.J. Miller, Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses, Cell Host Microbe 22 (5) (2017) 653–666.
[iv] H.H. Kong, J. Oh, C. Deming, S. Conlan, E.A. Grice, M.A. Beatson, E. Nomicos, E.C. Polley, H.D. Komarow, N.C.S. Program, Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis, Genome Res. 22 (5) (2012) 850–859.
H.M.P. Consortium, Structure, function and diversity of the healthy human microbiome, Nature 486 (7402) (2012) 207–214.
[v] M.L. Clausen, T. Agner, B. Lilje, S.M. Edslev, T.B. Johannesen, P.S. Andersen, Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis, JAMA Dermatol. 154 (3) (2018) 293–300.
[vi] N. Braidy, M. Izadi, A. Sureda, N. Jonaidi-Jafari, A. Banki, S.F. Nabavi, S.M. Nabavi, Therapeutic relevance of ozone therapy in degenerative diseases: focus on diabetes and spinal pain, J. Cell. Physiol. 233 (4) (2018) 2705.
G.á. Borges, S.T. Elias, S.M.M. da Silva, P.O. Magalh?es, S.B. Macedo, A.P.D. Ribeiro, E.N.S. Guerra, In vitro evaluation of wound healing and antimicrobial potential of ozone therapy, J. Craniomaxillofac. Surg. 45 (3) (2017) 364–370.
[vii] I. Zanardi, E. Borrelli, G. Valacchi, V. Travagli, V. Bocci, Ozone: a multifaceted molecule with unexpected therapeutic activity, Curr. Med. Chem. 23 (4) (2016).
V. Travagli, I. Zanardi, G. Valacchi, V. Bocci, Ozone and ozonated oils in skin diseases: a review, Mediators Inflamm. 2010 (1) (2010) 610418.
[viii] P.Y. Ong, D.Y. Leung, Bacterial and viral infections in atopic dermatitis: a comprehensive review, Clin. Rev. Allergy Immunol. 51 (3) (2016) 329–337.
Y. Yamazaki, Y. Nakamura, G. Núñez, Role of the microbiota in skin immunity and atopic dermatitis, Allergology Int. Official J. Jpn. Soc. Allergology 66 (4) (2017) S1323893017301156.
[ix] S.H. Jun, J.H. Lee, S.I. Kim, C.W. Choi, T.I. Park, H.R. Jung, J.W. Cho, S.H. Kim, J.C. Lee, Staphylococcus aureus-derived membrane vesicles exacerbate skin inflammation in atopic dermatitis, Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 47 (1) (2016).
[x] C.W. Lo, Y.K. Lai, Y.T. Liu, R.L. Gallo, C.M. Huang, Staphylococcus aureus hijacks a skin commensal to intensify its virulence: immunization targeting β-hemolysin and CAMP factor, J, Invest. Dermatol. 131 (2) (2011) 401–409.
[xi] Zeng, J., Dou, J., Gao, L., Xiang, Y., Huang, J., Ding, S. Lu, J. (2020). Topical ozone therapy restores microbiome diversity in atopic dermatitis. International Immunopharmacology, 80, 106191. doi:10.1016/j.intimp.2020.106191
[xii] J. Lu, M. Li, J. Huang, L. Gao, Y. Pan, Z. Fu, J. Dou, J. Huang, Y. Xiang, [Effect of ozone on Staphylococcus aureus colonization in patients with atopic dermatitis], Zhong nan da xue xue bao, Yi xue ban = J. Central South Univ. Med. Sci. 43 (2) (2018) 157–162.
[xiii] S. Brand, R. Teich, T. Dicke, H. Harb, A.Ö. Yildirim, J. Tost, R. Schneider-Stock, R.A. Waterland, U.M. Bauer, M.E. Von, Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes, J. Allergy Clin. Immunol. 128 (3) (2011) 618–625.e7.
[xiv] N. Fyhrquist, L. Ruokolainen, A. Suomalainen, S. Lehtimäki, V. Veckman, J. Vendelin, P. Karisola, M. Lehto, T. Savinko, H. Jarva, Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation, J. Allergy Clin. Immunol. 134 (6) (2014) 1301–1309.e11.